Logarithmic Norms and Nonlinear DAE Stability
نویسندگان
چکیده
Logarithmic norms are often used to estimate stability and perturbation bounds in linear ODEs. Extensions to other classes of problems such as nonlinear dynamics, DAEs and PDEs require careful modifications of the logarithmic norm. With a conceptual focus, we combine the extension to nonlinear ODEs [15] with that of matrix pencils [10] in order to treat nonlinear DAEs with a view to cover certain unbounded operators, i.e. partial differential algebraic equations. Perturbation bounds are obtained from differential inequalities for any given norm by using the relation between Dini derivatives and semi-inner products. Simple discretizations are also considered. AMS subject classifications: 65L05.
منابع مشابه
Effectivized Holder-logarithmic stability estimates for the Gel'fand inverse problem
We give effectivized Hölder-logarithmic energy and regularity dependent stability estimates for the Gel’fand inverse boundary value problem in dimension d = 3. This effectivization includes explicit dependance of the estimates on coefficient norms and related parameters. Our new estimates are given in L and L∞ norms for the coefficient difference and related stability efficiently increases with...
متن کاملThe Stochastic Logarithmic Norm for Stability Analysis of Stochastic Differential Equations
To analyze the stability of Itô stochastic differential equations with multiplicative noise, we introduce the stochastic logarithmic norm. The logarithmic norm was originally introduced by G. Dahlquist in 1958 as a tool to study the growth of solutions to ordinary differential equations and for estimating the error growth in discretization methods for their approximate solutions. We extend the ...
متن کاملLong-time stability of small FPU solitary waves
Small-amplitude waves in the Fermi-Pasta-Ulam (FPU) lattice with weakly anharmonic interaction potentials are described by the generalized Korteweg-de Vries (KdV) equation. Justification of the small-amplitude approximation is usually performed on the time scale, for which dynamics of the KdV equation is defined. We show how to extend justification analysis on longer time intervals provided dyn...
متن کاملSpot Self-Replication and Dynamics for the Schnakenburg Model in a Two-Dimensional Domain
The dynamical behavior of multi-spot solutions in a two-dimensional domain Ω is analyzed for the two-component Schnakenburg reaction-diffusion model in the singularly perturbed limit of small diffusivity ε for one of the two components. In the limit ε → 0, a quasi-equilibrium spot pattern in the region away from the spots is constructed by representing each localized spot as a logarithmic singu...
متن کاملStability radii of positive discrete-time systems
In this note we study stability radii of positive linear discrete-time systems under real or complex parameter perturbations. A simple formula for the real stability radius is established and it is shown that the real and the complex stability radii of positive systems coincide. These results are derived for arbitrary perturbation norms induced by monotonic vector norms (e.g. p-norms, 1 p 1). N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003